247 research outputs found

    Dyeing mechanism and optimization of polyamide 6,6 functionalized with double barrier discharge (DBD) plasma in air

    Get PDF
    The physico-chemical improvements occasioned by DBD plasma discharge in dyeing process of polyamide 6,6 (PA66) fibers were investigated. The SEM, fluorescence microscopy, UV–vis spectroscopy, surface energy, FTIR, XPS and pH of aqueous extracts confirm the high polar functionalization of PA66 fibers due to plasma incorporation of oxygen atoms from atmospheric air. DBD plasma-generated reactive species preferentially break the C N bonds, and not the aliphatic C-C chain of PA66. Formation of low-molecular weight acidic molecules that act as dye “carrier” and creation of micro-channels onto PA66 surface seems to favor dye diffusion into the fiber cores. Plasma treatment allows high level of direct dye diffusion and fixation in PA66 fibers at lower temperatures and shorter dyeing times than traditional dyeing methods.Fernando Oliveira (SFRH/BD/65254/2009) acknowledges Fundacdo para a Ciencia e Tecnologia, Portugal, for its doctoral grant financial support. Andrea Zille (C2011-UMINHO-2C2T-01) acknowledges funding from Programa Compromisso para a Ciencia 2008, Portugal

    LC-MS characterization of intermediates and products of acid orange dyes after laccase treatment

    Get PDF
    Poster apresentado em COST 847 & D32 actions joint meeting, na Povoa de Varzim, 200

    Enzymatic degradation of azo dyes under long time oxidative conditions

    Get PDF
    Trametes villosa laccase was used for direct azo dye degradation for which the reaction products were analyzed over long periods of time. Laccases have been extensively studied for the degradation of azo dyes [1-3].These enzymes are multicopper phenol oxidases that decolorize azo dyes through a highly non-specific free radical mechanism forming phenolic type compounds, thereby avoiding the formation of toxic aromatic amines [4,5].In the literature, there are a large number of papers reporting on decolorization of azo dyes however the fate of the products of azo dye laccase reactions is ignored [6-8]. Therefore, the purpose of this work is the study of the azo dye degradation products in the presence of laccase. Direct azo dye laccase degradation and amino-phenols polymerization was performed for several days. The formed soluble products were studied by LC-MS while the polymerized insoluble products were studied by 13C -NMR. LC-MS analysis shows the formation of phenolic compounds in the dye oxidation process as well as a large amount of polymerized products that retain the azo group integrity. The amino-phenols reactions were also investigated by 13C-NMR and LC-MS analysis and the real polymerization character of laccase enzymes was shown. This study highlights the fact that laccases polymerize the reaction products obtained in long time batch decolorization processes of the azo dyes. These polymerized products provide unacceptable color levels in effluents limiting the application of laccases as bioremediation agents

    Plasma technology applied in textile industry

    Get PDF
    Plasma technology applied to textiles is a dry, environmentally and worker friendly method to achieve surface alteration without modifying the bulk properties of different materials. In particular, atmospheric non-thermal plasmas are appropriate because most textile materials are heat sensitive polymers and applicable in a continuous processes. In the last years plasma technology has become a very active, high growth research field, assuming a great importance among all available material surface modifications in textile industry. The main objective of this work is to present an update on the current state of art relating plasma technologies applied to textile industry. The main effects obtained by the application of plasma discharge and all the textile production chain such as: desizing, mercerization, dyeing, printing, composite and finishing will be superficially discussed

    Reuse of effluent from dyeing process of polyamide fibers modified by double barrier discharge (DBD) plasma

    Get PDF
    Published online: 27 Feb 2015Low-temperature plasma technology becomes more and more attractive compared with traditional wet processes in textile preparation and finishing due to its high efficiency and low environmental impact. The objective of this study was to investigate the influence of dielectric barrier discharge plasma treatment on the trichromic dyeing process of polyamide 6.6 (PA66) and the reuse of the generated effluents for new dyeing processes. Chemical and physical characterization of the plasma-treated polyamide fibers was studied by means of static and dynamic contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy micrographs, and atomic force microscopy (AFM). Plasma treatment greatly increases the hydrophilicity and adhesion of PA66, due to the increase of polar groups and roughness on the fibers surface as confirmed by XPS and AFM. The kinetics of dyeing is quicker but leveled with high rubbing, light, and washing fastness quality. The reuse of the effluent obtained after dyeing of the plasma-treated fabrics showed excellent results of reproducibility, uniformity, and washing fastness. It was possible to reproduce the standard color for three dyeing cycles using the same effluent reducing the effluent load with a significant diminution in costs and environmental impact.Andrea Zille (C2011- UMINHO-2C2T-01) acknowledges funding from Programa Compromisso para a Ciencia 2008, Portugal

    The influence of chemical reaction conditions upon poly(styrene‐methyl methacrylate‐acrylic acid) synthesis: Variations in nanoparticle size, colour and deposition methods

    Get PDF
    Monodisperse latex nanospheres of poly(styrene‐methyl methacrylate‐acrylic acid) with different sizes were synthetised by soap‐free emulsion copolymerisation and applied onto polyamide 6,6 fabrics by two methods, ie, gravitational sedimentation and dip‐drawing. Different‐sized nanospheres were synthetised by varying temperature and stirring velocity as reaction parameters. Scanning electron microscopy and scanning transmission electron microscopy were used to evaluate nanosphere sizes and deposition structures. The results showed two different nanosphere structural arrangements on the fabric surface, a hexagonal packed centre structure in the even surfaces and a square arrangement in the out‐of‐plane surfaces. Different colours were observed according to particle size, namely, violet (ca. 170 nm), blue (ca. 190 nm), green (ca. 210 nm), yellow (ca. 230 nm) and red (ca. 250 nm). An iridescence effect was also observed, displaying different colours at different observation angles. By controlling the size of the nanospheres it was possible to obtain different, brilliant and iridescent colours. Using different nanosphere sizes it was possible to obtain different interplanar distances and to control the light scattering in the crystalline lattice planes, obtaining Bragg diffraction patterns.Fundação para a Ciência e a Tecnologia, Grant/Award Number: IF/00071/2015, PTDC/CTM-TEX/28295/2017 , SFRH/BD/145269/2019 and UID/CTM/00264/2019; European Regional Development funds (FEDER); Competitiveness and Internationalization Operational Program (POCI)—COMPETE, Grant/Award Number: POCI-01-0145-FEDER-0071

    Using photonic crystals for structural coloration of textiles

    Get PDF
    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited on the woven cotton fabrics. The deposited photonic crystals on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. The photonic nanospheres show an average diameter of 280 nm and display a face centre cubic (FCC) with an average thickness of 10 µm.This work is supported by FEDER funding on the COMPETE program and by national funds through FCT-Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007136 and UID/CTM/00264.info:eu-repo/semantics/acceptedVersio

    Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Get PDF
    Conventional textile coloration is a wet process involving high levels of water and chemicals consumption and wastewater generation. However, colour in textiles can also be generated by other mechanisms such as: absorption, emission, diffraction, interference and photochromism.[1] Chromotropic effect refers to reversible colour transformation due to external chemical or physical influence.[2] Photonic crystals are an important class of chromotropic materials. Colloidal crystals with a periodicity on the scale of half the wavelength of visible light exhibit structural colours similar to natural opals due to a diffraction effects that result in the appearance of a photonic band gap that forbids propagation of certain wavelengths.[3] Structural colouration is emerging as an innovative technology to produce colourful textiles materials.[4] Various colours impossible to reproduce by chemical coloration can be created by modifying the periodicity of the nanostructures or the environmental conditions using a single material.[5, 6] Photonic crystals can be applied on textile fabrics by colloid self-assembly and the structural colours can be controlled by adjusting the microspheres size and the viewing angles.[7] However, their application for textile structural coloration has been barely reported.[8] In this work, P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics. The structural colours of the deposited photonic crystals on the fabrics and its washing fastness were investigated.info:eu-repo/semantics/publishedVersio
    corecore